
www.elsevier.com/locate/visres

Vision Research 46 (2006) 1794–1803
Exogenous attention and endogenous attention influence
initial dominance in binocular rivalry

Sang Chul Chong a,*, Randolph Blake b

a Graduate Program in Cognitive Science, Department of Psychology, Yonsei University, Republic of Korea
b Department of Psychology, Vanderbilt University, USA

Received 23 May 2005; received in revised form 14 October 2005
Abstract

We investigated the influence of exogenous and endogenous attention on initial selection in binocular rivalry. Experiment 1 used
superimposed ±45� gratings viewed dioptically for 3 s, followed by a brief contrast increment in one of the gratings to direct exogenous
attention to that grating. After a brief blank period, dichoptic stimuli were presented for various durations (100–700 ms). Exogenous
attention strongly influenced which stimulus was initially dominant in binocular rivalry, replicating an earlier report (Mitchell, Stoner,
& Reynolds. (2004). Object-based attention determines dominance in binocular rivalry. Nature, 429, 410–413). In Experiment 2, endog-
enous attention was manipulated by having participants track one of two oblique gratings both of which independently and continuously
changed their orientations and spatial frequencies during a 5 s period. The initially dominant grating was most often the one whose
orientation matched the grating correctly tracked using endogenous attention. In Experiment 3, we measured the strength of both
exogenous and endogenous attention by varying the contrast of one of two rival gratings when attention was previously directed to that
grating. The contrast of the attended grating had to be reduced by an amount in the neighborhood of 0.3 log-units, to counteract
attention�s boost to initial dominance. Evidently both exogenous and endogenous attention can influence initial dominance of binocular
rivalry, effectively boosting the stimulus strength of the attended rival stimulus.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

When the two eyes view different stimuli, people typical-
ly perceive only one at a time, with the dominant stimulus
switching from one to the other unpredictably (Levelt,
1965). Called binocular rivalry, this intriguing phenome-
non has recently been widely studied, in part because of
its relevance for understanding resolution of perceptual
conflict (Blake & Logothetis, 2002). Binocular rivalry, ever
since its initial, systematic description by Wheatstone
(1838), has been compared to visual attention, for under-
standable reasons—there are obvious similarities between
the two. Both involve an element of selection, in that only
one stimulus among alternatives is singled out for complete
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perceptual processing. Moreover, normally conspicuous
changes to a non-dominant stimulus or to an unattended
stimulus may go completely undetected (Blake, Yu, Lokey,
& Norman, 1998; Rensink, O�Regan, & Clark, 1997).
Furthermore, one cannot willfully maintain dominance of
one percept in rivalry indefinitely, and nor can one sustain
attention on a single object for a prolonged period of time
(Pillsbury, 1908).

Is it reasonable to consider binocular rivalry as one
instance of a category of phenomena lumped under the
rubric of visual attention? Many distinguished scientific fig-
ures have endorsed this view, including Helmholtz (1925)
and James (1891), and contemporary research has revealed
strong links between rivalry and attention. We know, for
example, that attention can influence the rate of alterna-
tions during rivalry (Chong, Tadin, & Blake, in press;
Lack, 1978; Meng & Tong, 2004; Meredith & Meredith,
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1962; van Ee, van Dam, & Brouwer, 2005) as well as the
susceptibility of a stimulus to suppression (Ooi & He,
1999).

In a recently published paper, Mitchell, Stoner, and
Reynolds (2004) presented evidence that object-based
attention could influence the initially dominant stimulus
at the onset of binocular rivalry. Those investigators
‘‘cued’’ one of two oppositely rotating sets of dots by
briefly replacing 60% of that set of rotational dots with
an equal number of translating dots, and they found that
the cued rotational dots were subsequently more likely to
be dominant at the onset of rivalry. While highly sugges-
tive, the Mitchell et al result could be attributable, at
least in part, to differential stimulus adaptation during
the cuing period of each trial prior to the onset of rivalry:
the cued dots briefly stopped rotating and, instead, trans-
lated while the other dots continued rotating—this means
that the non-cued motion was present for a longer period
of time. It is known that differential adaptation to a stim-
ulus reduces its effectiveness when viewed subsequently
during rivalry (Blake, Sobel, & Gilroy, 2003; Blake,
Westendorf, & Overton, 1980). Thus, we wondered to
what extent Mitchell et al�s results (2004) are attributable
entirely to object-based attention—differential adaptation
could play a role in the biasing effect they observed.
Moreover, in their study Mitchell et al used a physical
change in a stimulus to direct attention to that stimulus,
a manipulation that presumably engages exogenous atten-
tion (Breitmeyer & Ganz, 1976; Yantis & Jonides, 1984).
We felt it would be informative to learn whether endog-
enous attention, involving no change in physical stimula-
tion, could influence initial selection in rivalry,
particularly since there is evidence that exogenous and
endogenous attention arise from different mechanisms
(see review by Yantis, 1998).

Accordingly, the present study replicated and extended
Mitchell et al�s experiments, using a technique that avoid-
ed any contribution of differential adaptation. Moreover,
we tested the effect of both exogenous and endogenous
attention on initial dominance of binocular rivalry. Also,
we used a nulling technique to assess the magnitude of
attention�s influence on rivalry, expressed in units of
effective contrast. By way of preview, we find that both
exogenous and endogenous attention reliably influence
the initial state of dominance during binocular rivalry.
2. General methods

2.1. Observers

Eleven individuals, including the first author, participated in different
combinations of the three experiments reported here. Five observers
participated in Experiments 1 and 2, respectively. Four observers partici-
pated in Experiment 3a and three participated in Experiment 3b. All had
normal or corrected-to-normal visual acuity and good stereopsis. Every
aspect of this study was carried out in accord with the regulations of the
Vanderbilt University Institutional Review Board and of the Department
of Psychology at Yonsei University.
2.2. Apparatus

Stimuli were created using MATLAB in conjunction with the Psycho-
physics Toolbox (Brainard, 1997) and were presented on the screen of a
linearized NEC 2100 monitor (Experiments 1a and 2) or a linearized
Samsung 2100 monitor (Experiment 1b). In all experiments, the monitor
frame rate was 75 Hz. Observers viewed the monitor through a mirror
stereoscope, with the left eye seeing only the left half of the screen and
the right eye seeing only the right half of the screen. Effective viewing dis-
tance was 96.5 cm, meaning that a pixel subtended approximately 0.02� of
visual angle. The observer�s head was stabilized by a chin and forehead
rest. Average luminance of the display, including background, was
13.3 cd/m2.

2.3. Procedure

All experiments followed the same general procedure, described as fol-
lows. At the start of each trial, the observer viewed two superimposed grat-
ings presented simultaneously and identically to each eye (dioptic phase); it
was during this period of non-rival, dioptic stimulation that attention could
be directed to one of the two gratings, either exogenously or endogenously.
Next, following a brief blank period, dissimilar gratings were presented sep-
arately to the two eyes (dichoptic phase); these two rival gratings were
oriented ±45� from vertical. Following offset of the dichoptic gratings,
the observer used the computer keyboard to make a three-alternative cate-
gorization judgment about the perceptual experience produced by the dich-
optic gratings (with the three alternatives being +45 grating only, the �45
grating only or a mixture of the two). At least 32 trials were devoted to each
condition tested in any given experiment.

3. Experiment 1: Exogenous attention

This first experiment employed the strategy, but not the
exact procedures, of the Mitchell et al. (2004) experiment,
wherein exogenous attention was directed to one of two
stimuli, both of which subsequently comprised rival stimu-
li. Our procedure, which was designed to minimize the pos-
sibility of selective adaptation to one of the two stimuli
during the cueing phase, utilized an abrupt, transient incre-
ment in contrast to one of two superimposed patterns to
cue exogenous attention. From other work (e.g., Luck &
Thomas, 1999; Muller & Rabbit, 1989), it is known that
visual transients of this sort can effectively cue attention
to a given stimulus. In a follow-up experiment we measured
the effectiveness of this exogenous cue as a function of the
time elapsing between cue offset and the onset of the dich-
optic stimuli, the aim being to learn whether cueing�s effect
on rivalry behaves like exogenous attention under other
conditions of transient cueing (e.g., Nakayama &
Mackeben, 1989).

3.1. Stimuli

One frame of the dynamic stimulus appearing during the
dioptic phase of each trial is shown in Fig. 1A. This stim-
ulus—a ‘‘plaid’’—comprised two superimposed ±45� sinu-
soidal gratings both identical in size (1� · 1�), contrast
(13.4%), and spatial frequency (5 cycles/deg). This dioptic-
ally viewed plaid was present for 3 s, and during this period
the plaid pattern flickered in counterphase at 2 Hz to pre-
clude formation of afterimages. At a given moment during



Fig. 1. The stimuli for Experiment 1. (A) Shows left and right eye gratings used during the dioptic phase of each trial. (B) Shows rival gratings for the
dichoptic phase and (C) shows gratings for catch trials in the dichoptic phase. The figures are not drawn to scale.
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this 3 s period, the contrast of one of the two gratings
forming the plaid was abruptly incremented to the maxi-
mum value (13.4%) for 100 ms while the contrast of the
other plaid component remained fixed at 4.5%; this brief,
0.47 log-unit contrast increment was constrained to occur
only during the moment in time during the counterphase
flicker cycle when both gratings were 4.5% in contrast. In
Experiment 1a, this contrast increment always occurred
at the end of the 3 s diopotic period; in Experiment 1b
the 100 ms increment could occur either 200, 400 or
600 ms before the end of the 3 s period after which both
dioptic components of the plaid were again equivalent in
contrast and continued in counterphase flicker until the
end of the 3 s period.

Conspicuous fusion frames (black contours, 0.12� in
width) surrounded both gratings to stabilize binocular
alignment of the two half-images; a small fixation circle
(diameter: 0.08�) appeared within the center of the dioptic-
ally viewed gratings.

For the dichoptic phase of each trial, one of five possible
pairs of test stimuli was presented to the two eyes on any
given trial (alternatives are shown schematically in Figs.
1B and C). Two of these stimulus pairs constituted genuine
rivalry trials, wherein the +45 and �45� gratings were pre-
sented separately to the two eyes (with the eye receiving
+45� counterbalanced over trials)—these were the trials
of actual interest. Also included were three types of �catch�
trials. On some catch trials both eyes received identical
gratings oriented +45�, and on other trials the two eyes
received identical gratings oriented �45�. On other catch
trials, both eyes received a mock grating consisting of
+45 and �45� parts, the aim being to mimic piecemeal
rivalry (note: this mock stimulus viewed by both eyes was
not a plaid but, rather, was a single grating consisting of
two different orientations). Because there were objectively
correct answers on the catch-trials, performance on these
trials verified whether observers understood and followed
the instructions. Catch trials were randomly intermixed
with rival trials and they comprised 16% of the total trial
number. The contrast of all the patterns used in the dichop-
tic phase was 13.4%. In both experiments, gratings present
during the final moment of the dioptic period had the same
phase as the gratings presented during the dichoptic phase,
thereby eliminating any possibility of perception of appar-
ent motion between dioptic and dichoptic gratings.

3.2. Design

There were two independent variables in Experiment 1a,
both of which varied within observers. The first variable
was attention—on two-thirds of trials a 0.47 log-unit con-
trast increment was introduced to the +45 or to the �45�
grating, and on the remaining one-third of trials no incre-
ment was introduced. This latter category of trial—no
increment—was included to provide baseline measures of
the incidence of initial dominance for the two rival orienta-
tions and of the incidence of mixtures. The second indepen-
dent variable was the exposure duration of the dichoptic
rival stimuli—100, 300, 500, or 700 ms. We included this
manipulation as part of the replication of the procedure
employed by Mitchell et al. (2004), who varied the expo-
sure duration of the rival stimuli to trace the time-course
of attentional cueing.

In Experiment 1b, there was one independent variable,
cue lead time: the contrast increment happened at either
600, 400, 200, and 0 ms before the end of dioptic period.
For this experiment, ‘‘no-cue’’ trials were excluded. The
exposure duration of the rival gratings during the dichoptic
phase was fixed at 250 ms, a value selected on the basis of
results from Experiment 1a.

3.3. Procedure

On each trial observers first dioptically viewed the count-
er-phase flickering plaid whose contours were oriented ±45�
relative to vertical. This dioptic phase lasted for 3 s, a dura-
tion deemed sufficiently long to preclude any effect of exoge-
nous attention associated with the onset of the dichoptic
stimulus itself. Observers were given no explicit attentional
instruction other than to maintain fixation at the center of
the plaid. At the end of the 3 s dioptic phase of the trial,
the contrast of the dioptic plaid dropped to zero for
250 ms, the aim being to preclude contrast summation
between the dioptic gratings and the subsequently presented
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dichoptic gratings (Hood & Finkelstein, 1986). After this
brief blank period, the pair of dichoptic gratingswas present-
ed for a designated duration, with the onset of those gratings
denoted by a ‘‘beep’’ sound. Following offset of the dichoptic
gratings, the observer pressed one of three keys to indicate
whether the percept at the timeof stimulus offset correspond-
ed to the +45� grating, the �45� grating or a mixture of the
two (mixtures could consist either of the bits and pieces of
the two gratings or the apparent superimposition of the
two). Observers experienced no difficulty using these three
categories, and they never experienced alternations in dom-
inance during the dichoptic period because the longest expo-
sure duration was only 700 ms.

3.4. Results

We first looked at performance on the catch trials (16%
of the total number of trials) for which there were objec-
tively correct responses. All of the observers responded cor-
rectly on 100% of these trials, verifying that they
understood and followed the instructions.

Next we analyzed performance for those 84% of trials
on which rival gratings were presented during the dichoptic
phase. Consider first those trials on which no contrast
increment was presented during the dioptic phase of the tri-
al (i.e., trials on which the exogenous cue was not intro-
duced). To derive baseline measures of initial dominance
for these trials, we treated each of those trials as ones on
which the cue did occur, only with the contrast increment
being zero. In this way, we were able to calculate the per-
centage of trials on which the observer reported initial
dominance of the ‘‘cued’’ orientation versus the ‘‘uncued’’
orientation, even though the cue itself was not physically
present. Results for those baseline trials are shown in the
right-hand panel of Fig. 2. As expected, responses were dis-
Fig. 2. The results of Experiment 1a (means and standard errors for five
observers) for contrast-increment and no increment conditions. The X axis
indicates the exposure duration of rival gratings presented during the
dichoptic phase and the Y axis indicates percentage of trials on which
observers reported initial dominance of the cued grating, the uncued
grating, or a mixture of the two gratings (‘‘neither’’). For the contrast
increment condition, the cued grating was the one whose contrast was
briefly incremented 0.47 log-units during the dichoptic phase of the trial;
for the no contrast increment condition, the cued grating was the one
designated to receive the contrast increment but, in fact, was incremented
not at all.
tributed evenly between the two alternative orientations,
with mixture responses also being given on a substantial
proportion of trials. These results, of course, are not sur-
prising, for we have no reason to expect responses to be dif-
ferentially distributed among the three possible categories
on these ‘‘no-cue’’ trials.

Turning to the trials of interest (i.e., those on which
the contrast increment cue was actually presented during
the dioptic phase), we calculated the proportion of trials
on which the initially dominant orientation corresponded
to the orientation cued by a real contrast increment
during the dioptic phase. Those results are shown in the
left-hand panel of Fig. 2, for each of the four exposure
durations used during the rival phase of the trial. Here
it can be seen that the contrast increment during the
dioptic phase clearly influenced initial dominance during
the rivalry phase. Analysis of variance confirmed that
the proportion of trials on which the cued orientation
was initially dominant (58%, on average) was significantly
(F (1,4) = 12.73, p < .05) greater than the proportion of
trials on which the uncued orientation was initially dom-
inant (13%). The main effect of exposure duration was
not statistically significant nor was the interaction
between exposure duration and cueing.

There were also trials involving cueing on which the
observer reported �mixed� dominance during the rivalry
phase. The incidence of these �mixed� trials was significantly
lower when the dioptic phase included the exogenous atten-
tion cue (on average 29%), relative to trials when that cue
was not present (44%; F (1,4) = 28.43, p < .01).

Shown in Fig. 3 are the results of Experiment 1b, where
the timing of exogenous cue was manipulated. Again,
observers were 100% correct on the catch trials. According
to a two-way analysis of variance, the proportion of trials
on which the cued orientation dominated initially was sig-
nificantly higher than the proportion of trials on which the
uncued orientation was dominant (F (1,4) = 32.49,
p < .01); this merely replicates the main finding of Experi-
ment 1a. More importantly, the interaction between trial
category (cued dominant vs. uncued dominant) and the
cue-lead time was statistically significant (F (3,12) =
13.19, p < .01), implying that exogenous attention was
ig. 3. The results of Experiment 1b (means and standard errors for five
bservers). The X axis indicates cue-lead time and the Y axis indicates the
ercentage of trials associated with the three response categories.
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Fig. 4. An example of the display used for the feature tracking task during
the dioptic phase of each trial in Experiment 2. Shown here are five (non-
consecutive) frames showing changes in orientation and in spatial
frequency. In the actual sequences, changes were smooth and less
conspicuous.
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more effective when the contrast increment occurred very
shortly before presentation of dichoptic gratings. To esti-
mate the time at which the exogenous cue became effective,
we performed a post hoc analysis on the difference between
the cued and the uncued trials. This analysis revealed that
the exogenous cue was effective only when the cue-lead
time was either 200 (p < .05) or 0 ms (p < .01). This finding
is consistent with previous results in which the time-course
of exogenous attention was estimated using a visual search
task (Nakayama & Mackeben, 1989) and a letter-matching
task (Muller & Rabbit, 1989).

How do our findings compare to those of Mitchell
et al. (2004)? In their study, the dioptic ‘‘cueing’’ phase
lasted 1 s, with the cue itself (translational motion briefly
replacing rotational motion) presented for 150 ms
toward the end of the dioptic phase; they had no blank
interval between the dioptic cueing period and the dich-
optic test period (the duration of which ranged up to
1850 ms). At the briefest durations tested, their observers
primarily experienced ‘‘mixtures’’ regardless of cueing;
cueing (defined as the tendency for the cued optic flow
field to be dominant initially in rivalry) reached full
strength approximately 450 ms after the offset of the
cue, implying that exogenous attention takes a brief
period to be engaged (cf. Nakayama & Mackeben,
1989). Mitchell et al found little if any effect of exposure
duration on cueing effectiveness (i.e., cueing remained
strong for dichoptic exposure durations up to
1850 ms). We, too, found robust cueing only when rival
targets were presented several hundred milliseconds after
cue offset (Experiment 1b), and we observed that cueing
is robust over a range of dichoptic exposure durations.
Indeed, comparing our data to those of Mitchell et al.
for comparable cue delay values, we find remarkable
agreement in the strength of cueing. In our experiments
we did not test cue delays less than 250 ms and did not,
therefore, observe the high incidence of mixtures found
by Mitchell and colleagues.

Both sets of results show, in other words, that attention
directed exogenously to one of two stimuli causes that stim-
ulus subsequently to dominate in rivalry. Our procedure
rules out any contribution from differential adaptation dur-
ing the dioptic, attention phase of each trial. If anything,
the attended grating should produce greater adaptation
(and hence be less likely to dominate in rivalry) because
of the brief contrast increment to that grating. Moreover,
our results go beyond those of Mitchell et al. by explicitly
showing the time-course of exogenous attention�s effect on
initial selection in rivalry (Fig. 3).

In Experiment 2, we sought to learn whether initial
selection in rivalry also could be influenced by endogenous
attention directed at one of two stimuli.

4. Experiment 2: Endogenous attention

In Experiment 2, we used a feature tracking task to
focus endogenous attention on the changing orientation
of one of two dioptic stimuli that, subsequently, comprised
dichoptic rival stimuli—with this task, sustained, willful
attention is focused on that stimulus while both stimuli
undergo equivalent changes in contour size and orientation
during the cueing phase.

4.1. Stimuli

We used a display modeled after that described by
Blaser, Pylyshyn, and Holcombe (2000) in their work on
multi-feature tracking. In our modification of their display,
both eyes viewed two superimposed gratings that formed a
plaid. Five sampled frames of this dioptic stimulus are
shown in Fig. 4. During the dioptic phase of each trial,
both gratings underwent independent changes in their ori-
entations and spatial frequencies for 5 s, with the following
constraints. The initial orientations of the gratings in the
first frame were +45� (±3�) for one grating and �45�
(±3�) for the other. The initial spatial frequency of the first
frame for each grating was the middle spatial frequency of
the possible range (±0.1 cycles/deg). At the end of the 5 s
dioptic tracking phase, the spatial frequency (4 cycles/
deg) and orientations (±45�) of the two gratings were con-
strained to be the same as those subsequently appearing in
the dichoptic phase.

During this 5-s period, orientation of the gratings could
vary between �74� and +74�, and the spatial frequency of
the gratings could vary between 2.3 cycles/deg and 5.7
cycles/deg. Orientation changed at 1.3 angular deg/frame
(13.33 ms) and spatial frequency changed at 0.03 cycles/
deg/frame. Both orientation and spatial frequency tended
to continue changing in a given direction, with a probabil-
ity of direction reversal in either orientation or in spatial
frequency being 10% unless either feature reached an upper
or lower limit in which case a change inevitably occurred.

During the dichoptic/rival phase, orthogonally oriented
gratings were presented separately to the two eyes, one
grating oriented +45� for one eye and the other oriented
�45� for the other eye. Exposure duration was either 250
or 500 ms. Again, catch trials were included, with the stim-
ulus being either a single orientation presented to both eyes
or the mock ‘‘mixed’’ grating presented to both eyes.



Fig. 5. The results of Experiment 2 (means and standard errors for five
observers), where observers tracked changes in orientation of one of the
dioptic gratings. The percentage of trials on which observers perceived
mixtures (‘‘neither’’), the cued grating, and the uncued grating, plotted
separately for trials on which observers were correct and were incorrect on
the feature tracking task; results are pooled over two exposure durations
(250 and 500 ms).
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The contrasts of all gratings in Experiment 2 were fixed
at 13.4%.

4.2. Procedure

As in Experiment 1, each trial consisted of an initial
dioptic phase during which attention was directed to one
of two gratings (endogenously, this time), followed by a
dioptic phase in which the two gratings were pitted against
one another in rivalry. Each trial went as follows, First, pri-
or to each trial, an on-screen instruction specified which
one of the two plaid gratings the observer was to monitor
during the 5-s dioptic phase; the instruction specified one of
two orientations present in the plaid at the beginning of the
dioptic exposure period. Following this instruction, the
plaid itself appeared and remained stationary for 1 s to
allow the observer to focus attention on the specified grat-
ing. Then, for the next 5 s, the gratings underwent changes
in spatial frequency and orientation, and the observer�s
task was to monitor the changes in orientation of the
attended grating. At the end of this 5 s period, both grat-
ings remained stationary for a brief period of time sufficient
for the observer to note whether the attended grating ended
up oriented +45� or �45�. The changes in spatial frequency
were irrelevant for performance of this task, but they did
contribute to the difficulty of the task. Pilot work was used
to establish a rate of orientation change that made the task
sufficiently difficult to ensure that observers attended to the
designated grating. The final phase of each trial comprised
the brief presentation of the ±45� rival gratings to the two
eyes (note, these two gratings corresponded in orientation
and spatial frequency to the plaid components present at
the end of the dioptic phase to prevent apparent motion
from dioptic plaid to dichoptic gratings). At the end of
each trial, the observer reported the resulting perceptual
state (dominance of one or the other rival grating, or mixed
dominance) and the orientation of the attentionally tracked
grating at the end of the dioptic phase.

4.3. Results

Accuracy on the attentional tracking task (dioptic phase
of the trials) averaged 87%, implying that the task could be
performed but was sufficiently difficult to require sustained
attention. Also, all observers were 100% correct on the var-
ious catch trials (dichoptic phase of the trials), implying
that they were accurately reporting their percepts. The
results summarizing initial dominance in rivalry are shown
in Fig. 5; data were pooled for the two exposure durations
because ANOVA revealed that results on these two condi-
tions were not significantly different, nor was the interac-
tion between exposure duration and trial type. We
analyzed the proportion of cued, uncued and neither
responses on trials when observers responded correctly
on the orientation tracking task during the dioptic phase
(‘‘correct trials’’) and trials when observers were incorrect
on the tracking task (‘‘incorrect’’). When correct in the
tracking task, observers reported initial dominance of the
tracked grating more often than the not-tracked grating
(F (1,4) = 8.88, p < .05). Thus, in other words, a grating
at which endogenous attention was directed tends subse-
quently to dominate the initial selection of rivalry. When
observers were incorrect in the tracking task, one might
expect the opposite trend on the assumption that observers,
for whatever reason, ended up tracking the wrong grating
during the dioptic phase of the trial. Although the trend
was indeed opposite for both dichoptic durations, main
effect of type of trials did not reach statistical significance
(p = 0.09). This result suggests that observers often just lost
track of the designated grating rather than reliably tracking
the wrong grating.

One might argue that sustained endogenous attention
throughout the tracking period is unnecessary for the sub-
sequent influence on rivalry dominance, with only the
attentional state during the final, brief period of the dioptic
phase influencing initial selection during the dichoptic
phase. We are making no claims about how long endoge-
nous attention must be engaged, but we are convinced that
initial selection in rivalry was influenced by the success of
attentional tracking during the dichoptic phase. Analysis
of variance confirmed that the interaction between the type
of trials and correctness of tracking performance was sta-
tistically significant (F (1,4) = 10.29, p < .05).

The magnitude of the effect of endogenous attention on
initial dominance was weaker than was the effect of exoge-
nous attention (compare cued vs. uncued results in Figs. 2
and 5). It is possible, of course, that we have underestimat-
ed attention�s effect in the endogenous condition because
that condition includes trials on which the observer simply
guessed correctly on the ‘‘tracking’’ task but, in fact, did
not have attention focused on that grating. There is no
way to separate those trials from ones on which the observ-
er�s forced-choice judgment on the tracking task reflected
genuine success on that task. There is no questioning, how-
ever, that endogenous attention is sufficiently robust to



ig. 6. The results of Experiment 3 (means and standard errors). Y axis
lots the contrast of one rival grating necessary for that grating to be
itially selected in rivalry 50% of the time. In the NO ATTEN condition,
ttention was not directed to either grating during the dioptic phase; in the
XO condition (four observers) and the ENDO condition (three observ-
rs), attention was directed exogenously or endogenously, respectively, to
ne of the dioptic gratings.
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influence initial selection in rivalry, without any
involvement of physical stimulus changes or differential
adaptation because of different exposure duration during
dioptic stimulation.

5. Experiment 3: Estimating the effective strength of
attention

How is it that attention, whether exogenous or endoge-
nous, boosts the effective strength of a monocular target
and thereby, enhances its likelihood of being the initially
dominant stimulus during rivalry? Other work on visual
attention implies that attention can increase the effective
contrast of a visual pattern (Carrasco, Ling, & Read,
2004; Lu & Dosher, 1998). Moreover, it is well established
that a higher contrast pattern predominates during rivalry
(Levelt, 1965; Mueller & Blake, 1989), and in pilot work we
have reliably found that a higher contrast rival pattern is
much more likely to be the initially dominant stimulus at
the onset of rivalry. Putting these observations together,
we hypothesized that attention influences initial dominance
by boosting the effective contrast of the attended pattern.

According to this hypothesis, we can make two predic-
tions. First, attention directed to one of two gratings dur-
ing the dioptic phase should not have an influence on
rivalry selection if the two rival gratings are already very
high in contrast. To test this prediction we replicated the
endogenous attention task used in Experiment 2, this time
using dioptic and dichoptic gratings all of 100% contrast.
Among the six observers tested, the average % difference
between cued and uncued trials was �4% (compare this
to the average % difference of 20 in Experiment 2)—as pre-
dicted, attention is ineffective when the physical contrast of
the rival gratings is already saturated.

Second, according to the contrast enhancement hypoth-
esis, it should be possible to counteract attention�s effect by
reducing the actual contrast of the rival grating receiving
attention during the dioptic phase, thereby re-establishing
stimulus conditions wherein initial predominance is equally
distributed between the two alternatives. Indeed, by adap-
tively varying the actual contrast of a previously attended
pattern, it should be possible to estimate the effective boost
in contrast by finding the contrast at which initial predom-
inance is equal for the two competing patterns. This was
the purpose of this last experiment.

5.1. Stimuli

Experiment 3a utilized the same stimuli as those used in
Experiment 1 and Experiment 3b used the same stimuli as
those used in Experiment 2.

5.2. Design

Experiment 3a employed the exogenous attention
manipulation to cue attention, i.e., a contrast increment
to one of two plaid components; Experiment 3b used the
endogenous attention manipulation to cue attention, i.e.,
observers tracked the changing orientation of one of two
plaid components. During the diochoptic phase of each tri-
al, we used an adaptive staircase procedure to vary the con-
trast of the ‘‘cued’’ grating from trial to trial, the aim being
to estimate the contrast at which initial selection of that
grating was equivalent to the likelihood of selecting the
uncued grating. Thus, following trials on which the observ-
er reported initial dominance of the ‘‘cued’’ rival grating,
the contrast of that grating was reduced on the next trial;
following trials on which the uncued grating�s orientation
dominated during the dichoptic rival presentation, contrast
was increased on the next trial. Following trials on which
the observer reported mixed dominance, the contrast of
the cued grating remained the same. Two randomly inter-
leaved staircases were administered concurrently, one start-
ing with an initial contrast of 21% for the cued grating and
the other starting at an initial contrast of 7.8% for the cued
grating. The contrast of the other, uncued grating remained
constant at 13.4%. We also administered two additional
staircases with the same initial contrasts without attention-
al modulation, in order to measure baseline point of sub-
jective equality. Contrast was changed from trial to trial
in steps of 2%, and the staircase was terminated after 15
reversals. We computed the average of the contrast associ-
ated with the last 4 reversals for the two independent stair-
cases. This value provides the estimate of the grating
contrast necessary to produce balanced initial selection
between the cued and the uncued rival gratings. Catch tri-
als were not included for these experiments.

5.3. Results

Results are shown in Fig. 6. For every observer, the con-
trast of the cued grating required to balance selection was
lower than the (fixed) contrast of the uncued grating, for
both exogenous and endogenous conditions. On average,
the contrast of an exogenously cued grating had to be
8.5% in order for its potency to be reduced to the point
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where that grating was no more likely than the other,
13.4% contrast grating to achieve initial dominance. For
the endogenously cued grating, contrast had to be 10.8%
to achieve equi-probably initial dominance. For the control
conditions where attention was not directed to either grat-
ing, equi-probably dominance was achieved when the grat-
ing whose contrast was varied by the staircase averaged
16%. This value is slightly higher than 13.4%, the contrast
of the uncued grating, which may be because we varied
contrast in linear, not log, steps. In any event, this slight
bias is in the opposite direction of the values needed to off-
set the modulatory effect of attention.

Thus, we find that attention�s influence on initial domi-
nance in rivalry can be nullified by reducing the physical con-
trast of that cued grating, by an amount in the neighborhood
of 0.3 log-units. While these results do not prove that atten-
tion really does boost the effective contrast of a pattern, they
are consistent with other psychophysical evidence implying
that attention alters the effective contrast of a visual stimulus
(Carrasco et al., 2004). Moreover, our results square nicely
with results from single cell recordings from visual area
MT (Martinez-Trujillo & Treue, 2002) and V4 (Reynolds
&Chelazzi, 2004;Reynolds&Desimone, 2003) showing that
the boost in neural response associated with attention can be
mimicked by a 50% increase in actual contrast (a value in
excellent agreement with our finding).

6. Discussion

As we knew from the earlier work by Ooi and He (1999)
and Mitchell et al. (2004), exogenous attention can influ-
ence initial dominance in binocular rivalry. The present
results confirm this observation but, more importantly,
extend our understanding of attention�s influence on rivalry
selection in three ways. First, our results show exogenous
attention is effective only when the transient cue designed
to capture attention occurs within about a 1/2 s period pri-
or to the onset of the dichoptic rival targets. Second, our
results show that initial selection in rivalry is also influ-
enced by endogenous attention. Third, attention�s influence
on initial rivalry dominance can be counteracted by reduc-
tions in the physical contrast of the rival pattern toward
which attention had been directed.

Attention�s ability to bias initial selection when stimuli
compete for perceptual dominance is not really surpris-
ing—after all, attention has ubiquitous influences through-
out all aspects of vision (Pashler, 1999). Indeed, attention is
commonly characterized as a mechanism whose prime pur-
pose is to select, or augment, one stimulus from among
many that together may tax limited processing resources.
Considered in this light, attention�s influence on binocular
rivalry would seem to represent a paradigmatic instance of
the operation of selection, just as Helmholtz proposed 150
years ago (Helmholtz, 1925). What Helmholtz did not
address—but what contemporary results suggest—is the
means by which attention may be influencing selection dur-
ing rivalry. Specifically, our results dovetail nicely with the
emerging view that attention serves to modulate the
strength of one stimulus relative to other, competing stim-
uli (Reynolds & Chelazzi, 2004). How does this operate in
the case of binocular rivalry?

We know that a higher contrast stimulus tends to dom-
inate a lower contrast stimulus, meaning that the higher
contrast pattern dominates perception for a larger percent-
age of the total viewing time (Levelt, 1965; Mueller &
Blake, 1989). This influence of contrast is particularly
strong at the onset of rivalry: a stronger contrast rival tar-
get will nearly always be the target seen initially at the
onset of dichoptic stimulation (results from our pilot
study). From the work of Carrasco et al. (2004), we know
that attention directed to a grating increases that grating�s
apparent contrast. The magnitude of this boost in contrast
varies between 30% and 70%, depending on the actual con-
trast of the attended grating; the effective boost we mea-
sured in Experiment 3 was 47%. Moreover, Carrasco
et al. (2004) found that this attentional boost in apparent
contrast was short-lived, dissipating within 500 ms of the
offset of the attentional cue. In our study, the interval
between offset of the dioptic (attentional) display and the
onset of the dichoptic (rivalry) display was always 250 ms
(a value selected to preclude contrast summation between
dioptic and dichoptic gratings). We also found no exoge-
nous attention effect when the exogenous cue preceded
the dichoptic stimuli more than 450 ms. Putting Carrasco�s
results together with the known influence of contrast dis-
parity on rivalry, we are drawn to the conclusion that
attention influences initial selection by increasing the effec-
tive contrast of an attended pattern. Certainly the results
from our Experiments 3a and 3b and are consistent with
this conclusion, for we showed that attention�s effect can
be counteracted by reducing the actual contrast of the rival
target toward which attention was drawn a fraction of a
second earlier. Finally, we showed the failure of attention
to influence selection when rival gratings had high contrast.

This conclusion moreover is consistent with the results
from single cell recordings. In a recent review of that
neurophysiological literature, Reynolds and Chelazzi
(2004) concluded that attention to a stimulus within a neu-
ron�s receptive field produces a boost in neural response
equivalent to that associated with a 51% increase in con-
trast. This value compares quite favorably with the 47%
estimate found in our Experiment 3. It should be acknowl-
edged, however, that the neurophysiological studies typi-
cally manipulated attention by having a monkey attend
either to a stimulus in the recorded neuron�s receptive field
or to a stimulus located outside that receptive field. In our
studies, however, the attended stimulus occupied the same
location as the unattended stimulus.

We, unlike Mitchell et al. (2004), also studied the influ-
ence of endogenous attention on initial selection during
rivalry. Although robust, the effect of endogenous attention
appears to be weaker than that of exogenous attention. This
may be attributable, in part, to the necessary procedural dif-
ferences between these two conditions. Exogenous attention
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was directed to one of two patterns by introduction of a
contrast increment to that pattern, a strategy that unambig-
uously earmarks one of the two patterns as the ‘‘attended’’
stimulus. Endogenous attention, on the other hand, was
tied to the observer�s successfully tracking one of two
changing patterns for a period of time, a difficult task that
was bound to produce mistakes (including mistakes on tri-
als where the observer nonetheless guessed correctly).

What are the implications of our results for theories of
binocular rivalry? For several decades, two competing
views of rivalry were pitted against each other, one being
an ‘‘early’’ eye-based account (e.g., Blake, 1989; Sugie,
1982) and the other a ‘‘late’’ stimulus-based account (e.g.,
Logothetis, Leopold, & Sheinberg, 1996; Walker, 1978).
Recently, however, these competing views have been amal-
gamated into a hybrid model in which rivalry is viewed as
the culmination of a cascade of distributed neural events
(Blake & Logothetis, 2002). On this hybrid model, different
aspects of rivalry are distinguished from one another.
Thus, the neural events triggering rivalry and initial selec-
tion may not be identical to those underlying rivalry
dynamics, and the neural circuitry mediating suppression
of one eye�s stimulus may differ from the constellation of
neural circuits promoting dominance of the other eye�s
stimulus. At the same time, there is an emerging view that
attention itself can modulate neural activity at multiple
stages of the visual hierarchy (Kastner, 2004; Liu, Pestilli,
& Carrasco, 2005; Reynolds & Chelazzi, 2004). Given these
emerging conceptualizations of rivalry and attention, it
could be an overstatement to assert, based on attention�s
influence on rivalry, that binocular rivalry involves compe-
tition between high-level stimulus representations. It is
entirely feasible that attention could modulate different
aspects of rivalry to varying degrees. Thus, attention may
strongly influence the initially dominant stimulus in rivalry
(Ooi & He, 1999; Mitchell et al., 2004; the present results)
yet exert a weaker influence on the dynamics of rivalry
(Chong et al., in press; Meng & Tong, 2004; van Ee
et al., 2005). Similarly, attention may augment global, con-
textual features that enhance the dominance of a stimulus
(e.g., Kovacs, Papathomas, Yang, & Feher, 1996; Sobel
& Blake, 2002; Silver & Logothetis, 2004) while, at the
same time, having essentially no influence on contextual
strengthening during suppression phases (Lee & Blake,
2004; Sobel & Blake, 2002).

So, in conclusion, the present results, together with those
of Ooi andHe and ofMitchell et al, point to a robust effect of
attention on initial selection.Moreover, this influence occurs
regardless whether attention is directed to a stimulus by
exogenous or endogenous means. Whether attention�s
potency can be applied with equal force to other aspects of
rivalry is a question that deserves further consideration.
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